
Topic 9
Streams and

File I/O

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Explain the concept of a stream

§ Understand the difference between text

files and binary files

§ Be able to program input/output of text

files using the Java I/O library class

PrintWriter and java.util.Scanner class

§ Be able to program input/output of binary

files using Java I/O library classes

ObjectInputStream and

ObjectOutputStream

Objectives

4

§ Be able to handle I/O exceptions,

especially FileNotFoundException

§ Be able to test for the ends of binary files

using EOFException

§ Be able to use the File class for directory

management

§ Reading

Savitch: Chapter 10.1 – 10.4

Objectives

5

§ Input = data coming in to the program

§ For example from keyboard, files on disk, other

programs or network connections

§ Output = data flowing out of the program

§ For example to the screen, files on disk, other

programs or network connections

§ I/O = managing the input and output of your

program

I/O and Streams

6

§ Advantages of file I/O:

§ Permanent copy

§ Output from one program can be input to

another

§ Input can be automated (rather than entered

manually)

§ In Java, keyboard/screen I/O as well as file

I/O is handled by streams

I/O and Streams

7

§ A Stream = flow of input or output data (i.e.

a series of values such as characters,

numbers, or bytes consisting of binary

digits)

§ There are many similarities between I/O to:

§ Files on disk

§ Network connections

§ Pipes to other programs

§ To the user via the screen, keyboard and mouse

I/O and Streams

8

§ Therefore in Java:

§ A Stream is an object that either delivers data to

its destination (screen, file, etc.) or that takes

data from a source (keyboard, file, etc.) and

delivers it to your program

§ It acts as a buffer between the data source and

destination

§ Streams are implemented in Java as objects

of special stream classes

I/O and Streams

9

§ Input stream is a stream that provides input

to a program

§ Output stream is a stream that accepts

output from a program

§ System.out is an output stream

§ Scanner class object is an input stream

§ A stream connects a program to an I/O

object

§ System.out connects a program to the screen

§ Scanner object connects a program to the

keyboard or a file

I/O and Streams

10

§ We use files on disk to store data which is:

§ Needed before or after program runs

§ Needs to be transported

§ Too large to be handled by a program all at once

§ Needed several times when you don’t want to

type it into your program more than once

§ All files (data and programs) are ultimately

stored as 0’s and 1’s but there are two

general types of encodings which you

choose between depending on your

purposes

Text vs Binary Files

11

§ The bits represent printable characters

§ Stores characters, one at a time

§ One byte per character for ASCII

§ Two bytes per character for Unicode

§ Can be written, read and edited by

programs and text editors

§ For example, Java source files are text files

§ Are very transportable (eg: send by email)

Text Files

12

§ The bits represent other types of encoded

information, such as executable instructions

or numeric data

§ All non-text files are called binary files

§ Examples include movie files, music files

§ Are easily read by the computer but not

humans

§ Are not “printable” files (actually you can

print them, but they will be unintelligible)

Binary Files

13

§ Different types of values coded differently to

maximize efficient use of space (eg: each

integer takes 4 bytes)

§ Can only be written and read by programs

(eg: Java programs) which know the types

of values being stored - can not normally be

read by a text editor

§ Are transportable (especially in Java)

Binary Files

14

§ In Java, the code to open the file creates

two names for an output file

§ The name used by the operating system

§For example: out.txt

§ The stream name variable

§For example: outputStream

§ Both are user/programmer defined names

§ Java programs use the stream names (eg:
outputStream)

Every File has Two Names

15

§ I/O in Java consists of:

§ OPENING: creating a stream object for each

input source or output destination and

associating the object with the external entity

§ LOOPING: getting values in or sending values

out by calling methods on the stream object

and then

§ CLOSING the file or connection by calling a

close method on the stream

Open – Loop – Close

16

§ Open once: you will need to create a

stream object and say what external entity

it corresponds to

§ In doing the main work of the program just

refer to the stream object

§ At the end make sure that you close the

stream

§ There are different classes of stream

objects appropriate to the task

§ Found in java.io.* library

Open – Loop – Close

17

§ For writing output to a text file, use an object
of class PrintWriter

§ This class has methods needed to create and

write to a text file

§ For reading input from a text file use a
java.util.Scanner object

§ For writing output to a binary file, use a
ObjectOutputStream object

§ For reading input from a binary file, use a
ObjectInputStream object

Which Stream Object to Use?

18

§ Errors are very possible and should be

handled via exceptions

§ To use the classes PrintWriter,

ObjectOutputStream and

ObjectInputStream your program needs

to import the java.io package:

import java.io.*;

§ Or, import the specific class:

import java.io.PrintWriter;

Which Stream Object to Use?

19

§ To open the file:

§ Declare stream variable for referencing the

stream

§ Invoke a PrintWriter constructor, pass the

file name as an argument

§ Requires try and catch blocks

Text File I/O: Writing

20

String fileName = “out.txt”;

PrintWriter outputStream = null;

try {

outputStream = new

PrintWriter(fileName);

}

catch (FileNotFoundException e) {

System.out.println(“Error opening”

+ “ the file ” + filename);

System.exit(0);

}

Text File I/O: Writing

21

§ The second statement above declares
outputStream as a variable of type

PrintWriter

§ The statement within the try block

connects the object outputStream to the

file named out.txt

§ This is called opening the file

§ If the file out.txt does not exist, a new

empty file named out.txt will be created

Text File I/O: Writing

22

§ If the file out.txt already exists, its (old)

contents will be lost

§ Data initially goes to memory buffer – when

the buffer is full, it goes to the file

§ Closing the file empties the buffer and

disconnects from stream

Text File I/O: Writing

23

§ Use via:

outputStream.println("This is a line.");

outputStream.print("A bit of a line.");

§ Close via:
outputStream.close();

§ An output file should be closed when you

are done writing to it

Text File I/O: Writing

24

§ If a program ends normally it will close any

files that are open

§ If a program automatically closes files when

it ends normally, why close them with

explicit calls to close?

§ Two reasons:

§ To make sure it is closed if a program ends

abnormally (it could get damaged if it is left

open)

§ A file open for writing must be closed before it

can be opened for reading

Text File I/O: Writing

25

§ Although Java does have a class that

opens a file for both reading and writing, it

is not used in this unit

Text File I/O: Writing

26

Example

/** TextFileOutputDemo.java from Savitch chapter 10.

Input three lines of text and output them to a

text file. */

import java.io.PrintWriter;

import java.util.Scanner;

public class TextFileOutputDemo {

public static void main(String[] args) {

String fileName = “out.txt”;

// declare outputStream instance of PrintWriter

PrintWriter outputStream = null;

27

Example

// open out.txt and connect to object

outputStream

try {

outputStream= new PrintWriter(fileName);

}

// if unable to open file

catch(FileNotFoundException e) {

System.out.println("Error opening the

file " + fileName);

System.exit(0);

}

28

Example

System.out.println("Enter three lines of text:");

Scanner keyboard = new Scanner(System.in);

for (int count=1;count <= 3;count++) {

String line = keyboard.nextLine();

outputStream.println(count+" "+line);

}

outputStream.close();

29

Example

System.out.println("Those lines were

written to " + fileName);

}// end main

}//end class

30

Java.io.PrintWriter Methods

§ Some of the class PrintWriter methods for writing

data to a text file:
• PrintWriter(filename: String) – creates a

PrintWriter object for the specified file

• print(s: String): void – Writes a string

• print(c: char): void – Writes a char

• print(i: int): void – Writes an int

print(d: double): void – Writes a double

§ Also contains the overloaded println methods

§ Also contains the overloaded printf methods

§ See java API documentation for further details

31

Appending to a Text File

§ If you connect a stream to an output file as in the above
program example (out.txt), you always start with an

empty file

§ Sometimes you may want to add the program output to

the end of an existing file

§ This is called appending to a file

§ This is achieved as follows:

outputStream = new PrintWriter(new

FileOutputStream("out.txt", true));

32

Appending to a Text File

§ The class PrintWriter does not have an appropriate

constructor for this task, so we need to use class
FileOutputStream

§ The second parameter (true) of FileOutputStream’s

constructor indicates that the file out.txt should not

be replaced if it already exists
§ If the file out.txt does not already exist, Java will

create an empty file of that name
§ The methods print and println will then append

data at the end of the file

33

Opening a Text File: Reading

§ To open a text file for input, we can use the
java.util.Scanner class to connect the text file to a

stream for reading

§ So far, we have used the Scanner class to get input

from the keyboard by passing System.in as an

argument to the Scanner’s constructor

§ Here we pass an instance of File class whose

constructor can take a file name as parameter

34

Opening a Text File: Reading

§ For example:

Scanner inputStream = new

Scanner(new File(“out.txt”));

§ Note that we can not pass a file name to Scanner’s

constructor directly

§ The class File which has many useful methods (see

later) can be used with file names

§ If the file “out.txt” does not exist, Scanner’s

constructor will throw a FileNotFoundException

35

Opening a Text File: Reading

§ The following simple program from Savitch

prompts the user to enter the name of a text

file, reads data from that text file and writes

them on to screen

36

Example

//TextFileInputDemo2.java from Savitch chapter 10

import java.io.*;

import java.util.*;

public class TextFileInputDemo2 {

public static void main(String[] args) {

System.out.println("Enter file name:");

Scanner keyboard = new Scanner(System.in);

String fileName = keyboard.next();

Scanner inputStream = null;

37

Example

System.out.println("The file " + fileName

+ “contains the following lines: ”);

try {

inputStream = new Scanner(new

File(fileName));

}

catch(FileNotFoundException e) {

System.out.println("Error opening the

file " + fileName);

System.exit(0);

}

38

Example

while (inputStream.hasNextLine()) {

String line = inputStream.nextLine();

System.out.println(line);

}

inputStream.close();

} // end main

} // end class TextFileInputDemo2

39Testing for the End of Text

Files
§ There are several ways to test for end of file

§ For reading text files in Java you can use
one of the Scanner class methods as in the

above program

§ The following code loops around reading

and then displaying each line in the file until

the end of the file is reached

§ The Scanner class method
hasNextLine() returns true if there is

another line (string) in the file available

40Testing for the End of Text

Files
while (inputStream.hasNextLine())

{

String line = inputStream.nextLine();

System.out.println(line);

}

§ Note that all methods of the Scanner class

that we have already used (eg,
nextLine(), next(), nextInt(),

nextDouble(), etc.) are available to us

here and can be used as before

41Testing for the End of Text

Files

§ Other methods of Scanner class which can

be used to test for end of a file include:

§ Scanner_Object_Name.hasNext() –

returns true if more input data is available to
be read by the method next()

§ Scanner_Object_Name.hasNextInt()

– returns true if more input data is available
to be read by the method nextInt()

42Testing for the End of Text

Files

§ Scanner_Object_Name.hasNextDoubl

e() – returns true if more input data is

available to be read by the method
nextDouble()

§ Scanner_Object_Name.hasNextFloat

() – returns true if more input data is

available to be read by the method
nextFloat()

§ See java API documentation for further
details

43

Parsing Words in a String

§ The class StringTokenizer can be used

to parse a line into words

§ It is in the util library so you need to import

java.util.*;

§ One of its useful methods is hasMoreTokens

which can be used to check if there are more

tokens

§ You can specify delimiters (the character or

characters that separate words), the default

delimiters are "white space" (space, tab, and

newline)

44

Parsing Words in a String

§ Eg: display words separated by any of the

following characters:

§ Space

§ new line (\n)

§ period (.)

§ comma (,)

45

Parsing Words in a String

Scanner keyboard = new Scanner(System.in);

String inputLine = keyboard.nextLine();

StringTokenizer wordFinder = new

StringTokenizer(inputLine, " \n.,");

//the second argument is a string of the 4 delimiters

while(wordFinder.hasMoreTokens()) {

System.out.println(wordFinder.nextToken());

}

Entering "Question, 2b. or !tooBee." in the above example, what

output would you get:

46

Parsing Words in a String

§ Entering "Question, 2b. or !tooBee." in the above

example, would give the following output:

§ Question

2b

or

!tooBee

§ Note that the Scanner class method next() can be

used to parse an input String, so the
StringTokenizer class is not needed for that

purpose when the Scanner class is used

47

Binary File I/O

§ Important classes for binary file output (to

the file)

§ ObjectOutputStream

§ FileOutputStream

§ Important classes for binary file input (from

the file):
§ ObjectInputStream

§ FileInputStream

48

Binary File I/O

§ Note that FileOutputStream and

FileInputStream are used only for their

constructors, which can take file names as

arguments

§ ObjectOutputStream and

ObjectInputStream cannot take file

names as arguments for their constructors

49

Binary File I/O

§ To use these classes your program needs a

line like the following:

import java.io.*;

§ The classes ObjectInputStream and

ObjectOutputStream:

§ Have methods to either read or write data one

byte at a time

§ Automatically convert numbers and characters

into binary

50

Binary File I/O

§ Note that binary-encoded numeric files (files

with numbers) are not readable by a text

editor, but store data more efficiently

§ Remember:

§ input means data into a program, not the file

§ similarly, output means data out of a program,

not the file

51

Binary File I/O

§ When writing to binary files using
ObjectOutputStream:

§ The output files are binary and can store any of

the primitive data types (int, char, double, etc.)

and the String type

§ The files created can be read by other Java

programs but are not printable

§ An IOException might be thrown

52

Binary File I/O

§ To open a new output (binary) file:

ObjectOutputStream outputStream =

new ObjectOutputStream(

new FileOutputStream("numbers.dat"));

53

Binary File I/O

§ Writing to an output (binary) file:

§ You can write data to an output file after it is

connected to a stream class by using methods
defined in ObjectOutputStream class

§ writeInt(int n)

§ writeDouble(double x)

§ writeBoolean(boolean b)

§ writeChar(int c) // takes int not char as

argument

§ writeUTF (String s)

§ etc.

54

Binary File I/O

§ Note that each write method throws
IOException, which means we will have

to write try-catch blocks for it

55

Binary File I/O

§ Using ObjectInputStream to read data

from binary files

§ Similar to opening an output file, but replace

"output" with "input"

ObjectInputStream inputStream =

new ObjectInputStream(

new FileInputStream("numbers.dat"));

§ For every output file method there is a

corresponding input file method

56

Binary File I/O

§ You can read data from an input file after it is

connected to a stream class using methods
defined in ObjectInputStream

§ readInt()

§ readDouble()

§ readBoolean()

§ readUTF()

§ etc.

§ Note each write method throws
IOException

57

Example

/** BinaryOutputDemo.java from Savitch chapter 10.

Outputting to a binary file. */

import java.io.*;

import java.util.*;

public class BinaryOutputDemo {

public static void main(String[] args) {

String fileName = "numbers.dat";

try {

// open file numbers.dat as output stream

// create ObjectOutputStream object connected to it

ObjectOutputStream outputStream =

new ObjectOutputStream(

new FileOutputStream(fileName));

58

Example

Scanner keyboard=new Scanner(System.in);

System.out.println("Enter nonnegative

integers, one per line.");

System.out.println("Place a negative

number at the end.");

int n;

do {

n = keyboard.nextInt();

// ObjectOutputStream objects have methods

// for writing out primitive values to them

outputStream.writeInt(n);

}while (n >= 0);

59

Example

System.out.println("Numbers and

sentinel value");

System.out.println("written to file " +

fileName);

outputStream.close(); // always close

}

catch(FileNotFoundException e) {

System.out.println("Problem opening

the file " + fileName);

}

60

Example

catch(IOException e) {

System.out.println("Problem with

output to file " + fileName);

}

} // end main

} // end class BinaryOutputDemo

61

Example: Client

/** BinaryInputDemo.java from Savitch chapter 10.

Reading input from a binary file. */

import java.io.*;

public class BinaryInputDemo {

public static void main(String[] args) {

String fileName = "numbers.dat";

try {

ObjectInputStream inputStream =

new ObjectInputStream(

new FileInputStream(fileName));

62

Example: Client

System.out.println("Reading the non-

negative integers");

System.out.println(" in the file

numbers.dat.");

int n = inputStream.readInt();

while (n >= 0) {

System.out.println(n);

n = inputStream.readInt();

}

63

Example: Client

System.out.println("End of reading

from file.");

inputStream.close();

}

catch(FileNotFoundException e) {

System.out.println("Problem opening

the file " + fileName);

}

64

Example: Client

catch(EOFException e) {

System.out.println("Problem reading

the file " + fileName);

System.out.println("Reached end of

the file.");

}

catch(IOException e) {

System.out.println("Problem reading

the file " + fileName);

}

} // end main

} // end class BinaryInputDemo

65

I/O Exception Handling

§ File I/O can produce several exceptions (all

defined in java.io):

§ FileNotFoundException = trying to open a

non-existent file for input

§ EOFException = trying to read in data after

the binary file has ended (note that text files

operate differently)

§ IOException is a class which includes as sub-

classes these and other exceptions which may

get thrown by I/O: you almost always have to
handle IOExceptions

66

I/O Exception Handling

§ Catching an EOFException is a good way

to finish reading a binary data file

§ In the following example also note:

§ Getting a file name from the user

§ Reading and writing Strings to binary files using

the UTF (= Unicode Text Format) encoding (the

recommended way of getting Strings
represented in binary)

67

Example

import java.io.*;

import java.util.*;

public class StringIO {

// uses binary file

public static void main(String[] args) {

System.out.println ("String storage

manager.");

char choice='q';

Scanner keyboard = new

Scanner(System.in);

68

Example

do {

System.out.println("Choices are:");

System.out.println("q to quit.");

System.out.println("s to enter and save " + "a

binary file of Strings");

System.out.println("v to view a " +

"binary file of Strings");

System.out.println("Enter choice:");

choice = (keyboard.next()).charAt(0);

69

Example

if (choice == 's') saveFile();

else if (choice == 'v') viewFile();

else if (choice != 'q')

System.out.println("Choice not

recognized.");

} while (choice != 'q');

System.out.println("Thank you for

using the String storage manager.");

} //end of main method

70

Example

static void saveFile() {

System.out.println("Please enter name of file " +

"to save Strings in.");

String fileName= getFileName(); // input

try {

ObjectOutputStream os =

new ObjectOutputStream(

new FileOutputStream(fileName));

71

Example

System.out.println("Enter Strings " +

"to store, one per line.");

System.out.println("Enter an empty

line " + "to finish.");

String s;

Scanner keyboard=new Scanner(System.in);

do {

s = keyboard.nextLine();

if (! s.equals("")) os.writeUTF(s);

} while (! s.equals(""));

72

Example

os.close();

System.out.println("Data stored

successfully in " + fileName);

} // end try block

catch (IOException e) {

System.out.println("Input problem.");

}

} //end of saveFile method

73

Example

static void viewFile() {

System.out.println("Please enter name

of file to view.");

String fileName= getFileName(); // input

try { // outer try block

ObjectInputStream is =

new ObjectInputStream(

new FileInputStream(fileName));

74

Example

System.out.println("Here are the

Strings stored in " +

fileName + ", one per line.");

String s;

try { // inner try block

do {

s = is.readUTF();

System.out.println(s);

} while (true);

} // end inner try block

75

Example

catch (EOFException e){ //empty block

}

is.close();

System.out.println("That was the

contents of " + fileName);

} // end outer try block

catch(FileNotFoundException e) {

System.out.println("File " + filename

+ " not found.");

}

76

Example

catch (IOException e) {

System.out.println("Output problem.");

}

} //end of viewFile

77

Example

static String getFileName() {

System.out.println("Enter file name:");

Scanner keyboard = new Scanner(System.in);

String fn = keyboard.nextLine();

return fn;

} //end of getFileName

} //end of class StringIO

78

File Management

§ We have seen how to specify files using just

their String names

§ If more complicated management is needed

then it is useful to make an object of the
File class

§ Eg: File f = new

File(“numbers.dat”);

§ FileInputStream and FileOutputStream

classes have constructors that take a File

argument as well as constructors that take a

String argument

79

File Management
§ We can:

§ Check whether the file exists or not via
f.exists() (true or false)

§ Check whether the program can read the file (ie
has permission) via f.canRead()

§ Find out the full path name of the file via
String path = f.getPath() which might

return “C:\My

Documents\Progs\numbers.dat”

§ Note that you should do such checks before

writing to a file because an existing file with

that name may be overwritten

80Text File Input:

BufferedReader

§ You can also use the BufferedReader

class for text file input (instead of the
Scanner class)

§ To open a text file for input, connect the text

file to a stream for reading as follows:

§ Use a stream of the class BufferedReader

and connect it to a text file

§ Use the FileReader class to connect the

BufferedReader object to the text file

81Text File Input:

BufferedReader

§ For example:

BufferedReader inputStream =

new BufferedReader(

new FileReader("data.txt"));

82Text File Input:

BufferedReader

§ Then:

§ Read lines (Strings) with readLine (returns

null when eof is reached)

§ BufferedReader has no methods to

read numbers directly, so read numbers

as Strings and then convert them (eg,
double d = Double.parseDouble

(str);)

§ Read a char with read (returns -1 when

end of file is reached)

83Text File Input:

BufferedReader

§ Note that you can only read Strings or single

chars from a text file using the
BufferedReader class

§ The Scanner class is much more flexible

84

Example: LowerToUpper

/** Copies one text file to another changing lower case

characters to upper case. Uses BufferedReader and

FilerReader classes for input instead of the Scanner

and File classes */

import java.io.*;

public class LowerToUpper {

public static void main(String[] args) {

System.out.println("Welcome to the lower -> " +

"upper case converter.");

System.out.print("Please enter the name

of file to process: ");

85

Example: LowerToUpper

String inFileName = keyboard.next();

System.out.println("Please enter the name of " +

"file to save result in.");

String outFileName= keyboard.next();

try {

PrintWriter pw = new

PrintWriter(outFileName);

BufferedReader br =

new BufferedReader(

new FileReader(inFileName));

86

Example: LowerToUpper

int nextCharVal=0;

while((nextCharVal=br.read()) != -1)

pw.print(Character.toUpperCase(

(char)nextCharVal));

pw.close();

br.close();

System.out.println("Files converted

and closed.");

}

87

Example: LowerToUpper

catch(FileNotFoundException e) {

System.out.println("File not found.");

}

catch(IOException e) {

System.out.println("IO problem.");

}

} //end of main

} //end of class

End of Topic 9

